Suppression of Methylation-Mediated Transcriptional Gene Silencing by βC1-SAHH Protein Interaction during Geminivirus-Betasatellite Infection
نویسندگان
چکیده
DNA methylation is a fundamental epigenetic modification that regulates gene expression and represses endogenous transposons and invading DNA viruses. As a counter-defense, the geminiviruses encode proteins that inhibit methylation and transcriptional gene silencing (TGS). Some geminiviruses have acquired a betasatellite called DNA β. This study presents evidence that suppression of methylation-mediated TGS by the sole betasatellite-encoded protein, βC1, is crucial to the association of Tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB). We show that TYLCCNB complements Beet curly top virus (BCTV) L2⁻ mutants deficient for methylation inhibition and TGS suppression, and that cytosine methylation levels in BCTV and TYLCCNV genomes, as well as the host genome, are substantially reduced by TYLCCNB or βC1 expression. We also demonstrate that while TYLCCNB or βC1 expression can reverse TGS, TYLCCNV by itself is ineffective. Thus its AC2/AL2 protein, known to have suppression activity in other geminiviruses, is likely a natural mutant in this respect. A yeast two-hybrid screen of candidate proteins, followed by bimolecular fluorescence complementation analysis, revealed that βC1 interacts with S-adenosyl homocysteine hydrolase (SAHH), a methyl cycle enzyme required for TGS. We further demonstrate that βC1 protein inhibits SAHH activity in vitro. That βC1 and other geminivirus proteins target the methyl cycle suggests that limiting its product, S-adenosyl methionine, may be a common viral strategy for methylation interference. We propose that inhibition of methylation and TGS by βC1 stabilizes geminivirus/betasatellite complexes.
منابع مشابه
Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression
In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these c...
متن کاملFunctional Analysis of Cotton Leaf Curl Kokhran Virus/Cotton Leaf Curl Multan Betasatellite RNA Silencing Suppressors
In South Asia, Cotton leaf curl disease (CLCuD) is caused by a complex of phylogenetically-related begomovirus species and a specific betasatellite, Cotton leaf curl Multan betasatellite (CLCuMuB). The post-transcriptional gene silencing (PTGS) suppression activities of the transcriptional activator protein (TrAP), C4, V2 and βC1 proteins encoded by Cotton leaf curl Kokhran virus (CLCuKoV)/CLCu...
متن کاملCLCuMuB βC1 Subverts Ubiquitination by Interacting with NbSKP1s to Enhance Geminivirus Infection in Nicotiana benthamiana
Viruses interfere with and usurp host machinery and circumvent defense responses to create a suitable cellular environment for successful infection. This is usually achieved through interactions between viral proteins and host factors. Geminiviruses are a group of plant-infecting DNA viruses, of which some contain a betasatellite, known as DNAβ. Here, we report that Cotton leaf curl Multan viru...
متن کاملA geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis
Geminivirus infection often causes severe vein clearing symptoms in hosts. Recently a betasatellite has emerged as a key regulator of symptom induction. To understand the host-betasatellite interactions in the process of symptom development, a systematic study was carried out involving symptoms induced by a betasatellite associated with radish leaf curl disease (RaLCB) in Nicotiana benthamiana....
متن کاملAn Insight into Cotton Leaf Curl Multan Betasatellite, the Most Important Component of Cotton Leaf Curl Disease Complex
Cotton leaf curl disease (CLCuD) is one of the most economically important diseases and is a constraint to cotton production in major producers, Pakistan and India. CLCuD is caused by monopartite plant viruses belonging to the family Geminiviridae (genus Begomovirus), in association with an essential, disease-specific satellite, Cotton leaf curl Multan betasatellite (CLCuMuB) belonging to a new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011